Koliokviumas vyks Balandžio mėn., 11 d., 17:30, kontaktiniu būdu, 142 a. Jums reikės realizuoti eBalsavimo sistemą.
Dalis balsų bus pateikta paštu, nors šis balsavimo būdas buvo kritikuojamas.
Jums reikės užpildyti balsavimo lentelę Google drive:
https://docs.google.com/spreadsheets/d/1v01HuSh2EaS LpGO4PXVQPDAbA6HvKDK/edit?
usp=sharing\&ouid=111502255533491874828\&rtpof=true\&sd=true
Lentelėje pataisykite savo Pavardė Vardas ị Pa. Vardas.
Pirmos 2 eilutės yra kaip pvz.
Mokymasị kaip tai padaryti pradėsime šiandien.
eVoting System must guarantee:

- Conseal the Vote
- Conseal the Ballots
 in the Ballot:

Internal Envelope

External Envelope
EE

EC

Signed EE with Voter's $\mathbf{V}_{\mathbf{w}}$ signature $\boldsymbol{\sigma}_{w}$ and PuK ${ }_{w}$

After eVoting it is the time to calculate the results.

1. EC verifies Voters $\mathbf{V}_{\mathbf{w}}$ PuK ${ }_{w}$ and if PuK ${ }_{w}$ is registered in EC database then goes to step 2.
2. EC verifies PuK $_{w}$ certificate and if it is valid then goes to step 3.
3. EC verifies signature $\boldsymbol{\sigma}_{\mathbf{w}}$ on EE and if it is valid then extracts IE and proceeds with ballots computation.

$$
\begin{array}{ll}
\text { >> p=109; } & \\
\text { >> } q=127 ; & \text { \% PuK=N=13843 } \\
\text { >> N=p*q } & \\
N=13843 & \\
& \\
\text { >> N_2=int64(N*N) }|N|=14 \text { bits } \\
\text { N_2 = 191628649 } & \\
\text { >> dec2bin(N_2) } & \\
\text { ans = 1011 0110 1100 } 0000010101101001 & \\
& \\
\text { >> fy =(p-1)*(q-1) } & \\
\text { fy }=13608 & \text { \% PrK=fy }
\end{array}
$$

Ballots computation

1. Collects all encrypted votes: $\left(E_{w}, E_{2}, E_{3}, \ldots, E_{M}\right)$.

Number of Voters is M.
2. Multiplies all encrypted votes

$$
E=E_{w} \cdot E_{2} \cdot E_{3} \cdot \ldots \cdot E_{M} \bmod N^{2}
$$

3. Decrypts E

$$
\operatorname{Dec}\left(\operatorname{Pr} K_{E C}, E\right)=V
$$

If there are 2 candidates: $\operatorname{Can} 1:=0 ; \operatorname{con} 2:=1$

$$
0 \equiv \operatorname{can} 1
$$

When using Paillier homomorphic encryption

$$
\operatorname{Dec}\left(\operatorname{Pr} K_{E C}, E\right)=V=V_{w}+V_{2}+V_{3}+\ldots+V_{M}
$$

Let $V_{k 1}$ is a number of votes dedicated to can 1. Let $V_{k 2}$ is a number of votes dedicated to can $2: \Rightarrow V=V_{k 2}$. Then the number of votes for Can 1: $M-V$

We used homomorphic encryption property:
$E n c\left(P_{U K} K_{E C} \cdot V_{w}+V_{2}+V_{3}+\ldots+V_{M}\right)=E_{W} \cdot E_{2} \cdot E_{3} \cdot \ldots \cdot E_{M}=E$
where $E_{w}=E_{n c}\left(\operatorname{Puk}_{E c}, V_{w}\right), E_{2}=E_{n c}\left(\right.$ PulE $\left.E_{C}, V_{2}\right), \ldots$

$$
\operatorname{Dec}\left(\operatorname{Pr} K_{E C}, E\right)=\operatorname{Dec}\left(\operatorname{Pr} K_{E C}, E w \cdot E_{2} \cdot E_{3} \cdot \ldots \cdot E_{M}\right)=V_{w}+V_{2}+V_{3}+\ldots+V_{M}=V
$$

Let: $\quad \mathbf{K}$ - be a number of Candidates (Can);
M - be a number of Voters (V);
For every candidate Can, Can2, ..., Can the Vote is encoded by certain integer number is assigned. Since all Votes are encrypted by every Voter using Paillier homomorphic encryption scheme, therefore the maximal sum of Votes must not increase PuL value \mathbf{N}.
It is due to the property of Paillier encryption stating that encrypted message $\mathbf{m} \in \mathbf{Z}_{N}=\{0,1,2,3, \ldots, N-1\}$. Then due to homomorphic property of Paillier encryption when all encrypted Votes are multiplied the obtained result \mathbf{E} (computed mod N^{2}) can be correctly decrypted and indicate the sum of all Votes. Then encoding of Votes for every candidate must be chosen in such a way that they can be distinguished from the sum of Votes of other candidate.

Let us consider three candidates Can, Can, Can for our generated PuK=N=13843, |N|=14 bits.
For Votes separation of 3 Candidates we assign the total sum of Votes represented by 4 bits.
This sum can be achieved by optimal encoding of Votes consisting of the following cases.

1. The Vote for Can 1 is encoded by number $2^{8}=\mathbf{2 5 6}$. Then If all 15 Voters vote for Can 1 the total sum of votes will be $15 * 256=3840$. Notice that $3840+256=4096=2^{12}$.
2. The Vote for Can $\mathbf{2}$ is encoded by number $\mathbf{2}^{4}=\mathbf{1 6}$. If all 15 Voters vote for Can 2 the total sum will be $15 * 16=240$. Notice that $240+16=256=2^{8}$.
3. The Vote for Can 3 is encoded by number 1. If all 15 Voters vote for Can 1 the total sum will be $15=1111_{b}$.

Then the maximal sum of votes is obtained in the case 1 and is equal to $3840<14351=\mathbf{N}$.
In tables below the maximal sum of Votes for Can, Can, Can encoded in binary with 4 bit length is presented. Then the maximal sum of Voters can not exceed number $15=2^{4}-1=1111_{b}$.

$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	1
	Can 1			$\operatorname{Can} 2$				$\operatorname{Can} 3$			

For Cans: $000000000001^{\text {b }}=1$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0						
	Can 1			Can			Can				

0	0	0	1	0	0	0	0	0	0	0
	Can 1			$\operatorname{Can} 2$				Can 3		

For Can: $000000010000_{b}=2^{4}=16$

Sum of total votes for every candidate:

Sum of total votes for every candidate:

0	0	0	0	0	0	0	0	1	1	1	1
	Can1				Can2				Can3		

$\mathbf{0}$	0	0	0	1	1	1	1	0	0	0
	Can1			Can2				Can3		

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The Globe wide Voting

Let us imagine that election is performed in the half of the Globe with number of Voters \mathbf{M} is about 4 billions. Let $\mathbf{M}<2^{32}=4294967296$.
Let the number of Candidates to be elected is about 1000.
Let $\boldsymbol{K}<2^{10}=1024$.
Then the number of bits for election data representation for every of $1024=2{ }^{10}$ Candidates is
$2^{10} * 2^{32}=2^{42}=4398046511104$ and is about 4 trillions.
Then the maximal sum of Votes is $\mathbf{K} * \mathbf{M}$ and is represented by $2^{42}=4398046511104$ bits number and is corresponding to the decimal number $(2)^{\wedge}\left(2^{42}\right)-1=2^{4398046511104}-1$.
Since the sum of Votes must be less than PuK=N, then \mathbf{N} must be close to the number $2^{4398046511104-1 .}$
Then |N|=4 498046511104 bits.
Since $\mathbf{N}=\mathbf{p} * \mathbf{q}$, where \mathbf{p}, \mathbf{q} are primes, then $|\mathbf{p}|=|\mathbf{q}|=2199023255552$ bits.
The problem is to generate such a big prime numbers.
If we encode decimal numbers in ASCII code then 1 decimal digit is encoded by 8 bits.
Then \mathbf{p}, q numbers in decimal representation will have $2199023255552 / 8=274877906944$ decimal digits.
It is more than 274 billions.

Problem solution.

The solution is to divide election into different Voting Areas so reducing number of Voters \mathbf{M}.
Then encryption scheme becomes more practical and more efficient realizable.
Let we are able to generate considerable large prime numbers \mathbf{p}, \mathbf{q} having $2^{15}=32768$ bits, i.e. $|\mathbf{p}|=|\mathbf{q}|=2^{15}=32768$ bits and hence are bounded by $2^{32768}-1$ such a huge decimal number. Notice that in traditional cryptography for prime numbers it is enough to have 4096 bit length.
Then $N=p * q$ will have $32768+32768=65536=2^{16}$ bit length and hence is bounded by the following $2^{65} 536$ - 1 huge decimal number.
Then the arithmetic operations are performed with such a huge numbers and even with numbers up to N^{2} since operations $\bmod N^{2}$ are used. Therefore the special software is needed.
Let Voting Areas are divided in such a way that they can serve about 16 millions Voters.
Assume that number of Voters $\mathbf{M}<16777215=2^{24}-1$. Then $|\mathbf{M}|=24$ bits.
Then for every candidate we must dedicate 24 bits in the total string of bits of number PuK=N where
$|N|=2^{16}=65536$.
Then number of Candidates \mathbf{K} in Voting Area is the following:

$$
\mathbf{K}=|N| /|M|=2^{16} / 24=2731 .
$$

The distribution of Candidates and the number of bits them assigned is presented in table.

Total length of \mathbf{N} is 65536 bits

24 bits 24 bits 24 bits	24 bits		
Can 1	$\operatorname{Can} 2 \boldsymbol{C a n 3} \longleftrightarrow$	Can2731	

There are 2 problems must be solved:

1. To generate 2 large prime numbers \mathbf{p}, \mathbf{q} having $2^{15}=32768$ bit length $\sim 10^{10000}$: it is feasible.
2. To perform a computations with large numbers using special software having $2^{32}=4294967296$ bits when operations are performed $\bmod \mathrm{N}^{2}$.
```
>> p=109;
>> q=127;
>> N=p*q % PuK=N=13843
N = 13843
    % |N|=14 bits
>> N_2=int64(N*N)
N_2 = 191628649
>> dec2bin(N_2)
ans=1011011011000000010101101001
>> fy=(p-1)*(q-1)
fy =13608 % PrK=fy
```

- Enc: on input a public key N and a message $m \in \mathbb{Z}_{N}$, choose a random $r \leftarrow \mathbb{Z}_{N}^{*}$ and output the ciphertext

$$
\begin{gathered}
c:=\left[(1+N)^{m} \cdot r^{N} \bmod N^{2}\right] . \\
e_{1} \bmod N^{2} e_{2} \bmod N^{2} \\
c=e=e_{1} \cdot e_{2} \bmod N^{2}
\end{gathered}
$$

```
>> vw=16
\(v w=16\)
>> pw= randi( \(\mathrm{N}-1\) )
\(r w=5029\)
>> \(\operatorname{gcd}(r w, N)\)
ans \(=1\)
>> ew1=mod_exp((1+N),vw,N_2)
ew1 = 221489
>> ew2=mod_exp(rw,N,N_2)
ew2 = 115257872
>> ew=mod(ew1*ew2,N_2)
em \(=157077575\)
>> vw=16
```

>> E=mod(ew*e2,N_2)
$\mathrm{E}=108508702$
>> wa $=256$
$\mathrm{v} 2=256$
>> re= randi($\mathrm{N}-1$)
$r 2=12539$
>> gcd(r2,N)
ans $=1$
>> e21=mod_exp((1+N),v2,N_2)
e21 = 3543809
>> e22=mod_exp(r2,N,N_2)
e22 $=57431777$
>> e2=mod(e21*e22,N_2)
en $=184773534$

$$
\begin{aligned}
& c^{\phi} \bmod N^{2}=d_{1} \\
& m:=\left[\frac{\left[c^{\overline{(N)}} \bmod N^{2}\right]-1}{\infty} \cdot \frac{\Phi^{-1} \bmod N=d_{3}}{}\right. \\
& m:=\left[\frac{\left[c^{(\Phi(N)} \bmod (N)^{2}\right]-1}{N} \cdot \phi(N)^{-1} \bmod (N)\right] . \quad m=d_{2} \cdot d_{3} \bmod N \\
& \frac{d_{1}-1}{N} \bmod N=d_{2}
\end{aligned}
$$

	_M: cMi	Encrypted Vote	received by M	ail: cMi. Provid	ded by lecturer					
	*cMi	Multiplied encry	ypted votes in	polling station	multiplied by cMi					
	(c* ${ }^{*} \mathrm{Mi}$)	Decryption all m	multiplied votes							
Tot	S_of_V	Total sum of vo								
No	N_of_V_C	N_of_V_Can2	N_of_V_Can3	Tot_N_of_V	Dec(cMi)	Acc/Dec cMi	Can1	Can2	Can3	
1	5	8	0	13	512, 2 balsai uz pirma	Dec	3	8	0	
2	6	8	0	14	256, 256, 256	Dec	3	8	0	
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
12										
14										
15										
N_O	f_V_Can1	Number of vot	es for Can1							
N_O	f_V_Can2	Number of vot	es for Can2							
N_o	f_V_Can3	Number of vot	es for Can3							
Tot	_N_of_V	Total number of	of votes							
	c(c*Mi)	Decrypted vote	cMi received	by Mail						
Acc	/Dec cMi	Accept or Decli	ine vote receive	ed by Mail. In	put: Acc or Dec					
	Can1	Number of vot	es for Can1							
	Can2	Number of vot	es for Can2							
	Can3	Number of vot	es for Can3							
	$M=13$	Voters:	$V=$	$2212=$	$N_{1}\left(\cos ^{256} 1\right)+$	$N_{2} \text { (Cas }$	$2)$	$+$	C	$(\cos 3)$

| Can1 | Can2 | Can3 |

| \gg dec2bin(2212) | | $\gg 2212 / 256$ |
| :--- | :--- | :--- | :--- |
| ans $=100010100100$ | ans $=8.6406$ | |
| ans $=$1000 1010 0100
 8 votes 10 votes 4 votes
 Can1 Can2 Can3 | $\gg 2212-8 * 256$ | |
| | | ans $=164$ |
| | | $\gg 164 / 16$ |
| | | ans $=10.250$ |
| | $\gg 2212-8^{*} 256-10^{*} 16$ | |
| | | ans $=4$ |
| | | $\gg 8 * 256+10^{*} 16+4 * 1$ |
| | | ans $=2212$ |

Till this place

