Koliokviumas vyks Balandžio mėn., 11 d., 17:30, kontaktiniu būdu, 142 a. Jums reikės realizuoti eBalsavimo sistemą. Dalis balsų bus pateikta paštu, nors šis balsavimo būdas buvo kritikuojamas. Jums reikės užpildyti balsavimo lentelę Google drive: https://docs.google.com/spreadsheets/d/1v01HuSh2EaS_LpGO4PXVQPDAbA6HvKDK/edit? usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

Lentelėje pataisykite savo Pavardė Vardas į Pa. Vardas. Pirmos 2 eilutės yra kaip pvz. Mokymasį kaip tai padaryti pradėsime šiandien.

eVoting System must guarantee:

- Conseal the Vote
- Conseal the Ballots

- 1. EC verifies Voters V_w PuK_w and if PuK_w is registered in EC database then goes to step 2.
- 2. EC verifies PuK_w certificate and if it is valid then goes to step 3.

3. EC verifies signature σ_w on EE and if it is valid then extracts IE and preceds with ballots computation. >> p=109; >> q=127; >> N=p*q % PuK=N=13843 N = 13843 % |N|=14 bits >> N_2=int64(N*N) N 2 = 191628649 >> dec2bin(N_2) ans = 1011 0110 1100 0000 0101 0110 1001 >> fy=(p-1)*(q-1) fy = 13608 % PrK=fy Ballots computation 1. Collects all encrypted votes: (Ew, E2, E3, ..., EM). Number of Voters is M. 2. Multiplies all encrypted votes $E = E_{W} \cdot E_{2} \cdot E_{3} \cdot \ldots \cdot E_{M} \mod N^{2}$ 3. Decrypts E $Dec(PrK_{FC}, E) = V.$ If there are 2 candidates: Can1:=0; Can2:=1 $0 \equiv can1$ \Rightarrow $1 \equiv can2$ \Rightarrow When using Paillier homomorphic encryption $Dec(PrK_{EC}, E) = V = V_w + V_2 + V_3 + ... + V_m$ Let VKs is a number of votes dedicated to can 1. Let V_{k2} is a number of votes dedicated to Can 2: $\Rightarrow V = V_{k2}$. Then the number of votes for Can1: M-V We used homomorphic encryption property:

 $Enc(PuK_{EC}, V_{W} + V_{2} + V_{3} + \dots + V_{M}) = E_{W} \cdot E_{2} \cdot E_{3} \cdot \dots \cdot E_{M} = E$ where $E_W = E_{NC}(P_{UK_{EC}}V_W), E_2 = E_{NC}(P_{UK_{EC}}, V_2), --- Dec(PrK_{EC_{1}}E) = Dec(PrK_{EC_{1}}Ew \cdot E_{2} \cdot E_{3} \cdot \dots \cdot E_{M}) = V_{w} + V_{2} + V_{3} + \dots + V_{M} = V$

Let: **K** - be a number of Candidates (Can);

M - be a number of Voters (V);

For every candidate **Can1**, **Can2**, ..., **CanK** the **Vote** is encoded by certain integer number is assigned. Since all **Votes** are encrypted by every **Voter** using Paillier homomorphic encryption scheme, therefore the maximal sum of **Votes** must not increase **PuK** value **N**.

It is due to the property of Paillier encryption stating that encrypted message $m \in Z_N = \{0, 1, 2, 3, ..., N-1\}$. Then due to homomorphic property of Paillier encryption when all encrypted **Votes** are multiplied the obtained result **E** (computed mod N²) can be correctly decrypted and indicate the sum of all **Votes**. Then encoding of **Votes** for every candidate must be chosen in such a way that they can be distinguished from the sum of Votes of other candidate.

Let us consider three candidates **Can1**, **Can2**, **Can3** for our generated **PuK=N=**13843, |N|=14 bits. For **Votes** separation of 3 **Candidates** we assign the total sum of **Votes** represented by 4 bits.

This sum can be achieved by optimal encoding of **Votes** consisting of the following cases.

- The Vote for Can1 is encoded by number 2⁸=256. Then If all 15 Voters vote for Can1 the total sum of votes will be 15*256=3840. Notice that 3840+256=4096=2¹².
- The Vote for Can2 is encoded by number 2⁴=16. If all 15 Voters vote for Can2 the total sum will be 15*16=240. Notice that 240+16=256=2⁸.
- 3. The Vote for Can3 is encoded by number 1. If all 15 Voters vote for Can1 the total sum will be 15 = 1111_b.

Then the maximal sum of votes is obtained in the case 1 and is equal to 3840 < 14351 = N. In tables below the maximal sum of Votes for **Can1**, **Can2**, **Can3** encoded in binary with 4 bit length is presented. Then the maximal sum of **Voters** can not exceed number $15=2^4-1=1111_b$.

0 0 0 0	0 0 0 0	<mark>0 0 0 1</mark>		
			For Can3: 0000 0000 0001b=1	
Can1	Can2	Can3		
0 0 0 0	<mark>0 0 0 1</mark>	0 0 0 0	For Can2 : 0000 0001 0000 _b =2 ⁴ =16	
Can1	Can2	Can3		
<mark>0 0 0 1</mark>	0 0 0 0	0 0 0 0	For Can1 : 0001 0000 0000 _b =2 ⁸ =256	
		A A		
Can1	Can2	Can3		
			Sum of total votes for every candidate:	

			Sum of total votes for every candidate:
0 0 0 0 0 Can1	0 0 0 Can2	1 1 1 1 Can3	For Can3 : 0000 0000 1111 _b =15
0 0 0 0 1 Can1	1 1 1 Can2	0 0 0 0 Can3	For Can2 : 0000 1111 0000 _b =240
	Cuil	Cuit	
r h			
1 1 1 0	0 0 0	0 0 0 0	For Can1 : 1111 0000 0000 _b =3840
Can1	Can2	Can3	
		CallJ	

The Globe wide Voting

Let us imagine that election is performed in the half of the Globe with number of **Voters M** is about 4 billions. Let $M < 2^{32} = 4$ 294 967 296.

Let the number of **Candidates** to be elected is about 1000.

Let **K** < 2¹⁰ = 1 024.

Then the number of bits for election data representation for every of $1024 = 2^{10}$ Candidates is

2¹⁰*2³² = 2⁴² = 4 398 046 511 104 and is about 4 trillions.

Then the maximal sum of Votes is K*M and is represented by $2^{42} = 4398046511104$ bits number and is corresponding to the decimal number (2)^(2^{42}) - 1 = $2^{4398046511104}$ - 1.

Since the sum of Votes must be less than PuK=N, then N must be close to the number 2^{4 398 046 511 104} - 1.

Then |**N**|= 4 398 046 511 104 bits.

Since N=p*q, where p, q are primes, then |p|=|q|= 2 199 023 255 552 bits.

The problem is to generate such a big prime numbers.

If we encode decimal numbers in ASCII code then 1 decimal digit is encoded by 8 bits.

Then **p**, **q** numbers in decimal representation will have 2 199 023 255 552 / 8 = 274 877 906 944 decimal digits.

It is more than 274 billions.

Problem solution.

The solution is to divide election into different **Voting Areas** so reducing number of **Voters M**. Then encryption scheme becomes more practical and more efficient realizable.

Let we are able to generate considerable large prime numbers **p**, **q** having $2^{15} = 32768$ bits,

i.e. $|\mathbf{p}| = |\mathbf{q}| = 2^{15} = 32$ 768 bits and hence are bounded by $2^{32768} - 1$ such a huge decimal number.

Notice that in traditional cryptography for prime numbers it is enough to have 4096 bit length.

Then **N=p*q** will have 32 768 + 32 768 = 65 536 = 2^{16} bit length and hence is bounded by the following $2^{65 536}$ - 1 huge decimal number.

Then the arithmetic operations are performed with such a huge numbers and even with numbers up to N^2 since operations **mod** N^2 are used. Therefore the special software is needed.

Let Voting Areas are divided in such a way that they can serve about 16 millions Voters.

Assume that number of **Voters M** < 16 777 215 = 2^{24} - 1. Then |**M**| = 24 bits.

Then for every candidate we must dedicate 24 bits in the total string of bits of number PuK=N where $|N|=2^{16}=65536$.

Then number of **Candidates K** in **Voting Area** is the following:

$$\mathbf{K} = |\mathbf{N}| / |\mathbf{M}| = 2^{16} / 24 = 2731.$$

The distribution of **Candidates** and the number of bits them assigned is presented in table.

4 bits			Total length of N is 65 536 bits	
4 Dits	24 bits	24 bits		24 bits
Can1	Can2	Can3		→ Can2731
iere ar	e 2 probl	ems must	be solved:	
			The numbers \mathbf{p} , \mathbf{q} having $2^{15} = 32768$ bit lengt	th ~ 10^{10000} : it is feasible.
			ons with large numbers using special softwar	
wher	operatio	ns are per	formed mod N ² .	
> p=10	9;			
- q=127				
> N=p*	•		% PuK=N=13843	
= 1384	13			
N1 0			% N =14 bits	
	int64(N*1			
	91628649 in(N 2)			
	· _ /	00 0000 01	.01 0110 1001	
> fy=(p	-1)*(q-1)			
= 136	08		% PrK=fy	
Enc:			t key N and a message $m \in \mathbb{Z}_N$, choose a utput the ciphertext	
Enc:		\mathbb{Z}_N^* and or	utput the ciphertext	$Z_N^* = \{ z \mid \gcd(z, N) = 1 \}$
Enc:	om $r \leftarrow 2$	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	
Enc:	om $r \leftarrow 2$	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	$Z_N^* = \{ z \mid \gcd(z, N) = 1 \}$
Enc:	om $r \leftarrow 2$	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	$Z_N^* = \{ z \mid \gcd(z, N) = 1 \}$
Enc:	om $r \leftarrow 2$	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext	$Z_N^* = \{ z \mid gcd(z, N) = 1 \}$
Enc:	om $r \leftarrow i$	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	$Z_N^* = \{ z \mid \gcd(z, N) = 1 \}$
Enc: rand	om $r \leftarrow i$	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	$Z_N^* = \{ z \mid \gcd(z, N) = 1 \}$ $z < N-1$
Enc: rando vw=1 w = 16	om $r \leftarrow i$	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	$Z_N^* = \{ z \mid z cd(z, N) = 1 \}$ z < N-1 >> w2=256
 Enc: rand vw=1 v = 16 rw=ray v = 502 	6 andi(N-1)	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	$Z_{N}^{*} = \{ Z \mid 3cd(Z, N) = 1 \}$ $Z < N-1$ $>> w2=256$ $v2 = 256$ $>> r2=randi(N-1)$ $r2 = 12539$
<pre>> vw=1 w = 16 > rw=ra v = 502 > gcd(r</pre>	6 andi(N-1)	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^m \cdot r^N \mod N^2].$	$Z_{N}^{*} = \{ Z \mid gcd(Z, N) = 1 \}$ $Z < N-1$ $> w2=256$ $v2 = 256$ $> r2=randi(N-1)$ $r2 = 12539$ $> gcd(r2,N)$
Enc: rando v = 16 v = 16 v = 502 gcd(r ns = 1	6 andi(N-1) 29 w,N)	\mathbb{Z}_N^* and or c := \mathcal{C}_1 $\mathcal{C}_2 = \mathcal{C}_1^*$	utput the ciphertext $[(1+N)^{m} \cdot r^{N} \mod N^{2}].$ $mod N^{2} e_{2} \mod N^{2}$ $e_{2} e_{1} \cdot e_{2} \mod N^{2}$	$Z_{N}^{*} = \{ Z \mid gcd(Z, N) = 1 \}$ $Z < N-1$ $> w2=256$ $v2 = 256$ $> r2=randi(N-1)$ $r2 = 12539$ $> gcd(r2,N)$ $ans = 1$
<pre>> vw=1 w = 16 > rw=ra v = 502 > gcd(r ns = 1 > ew1=</pre>	om <i>r</i> ← 2 6 andi(N-1) 29 w,N) :mod_exp	\mathbb{Z}_N^* and or $c := 0$	utput the ciphertext $[(1+N)^{m} \cdot r^{N} \mod N^{2}].$ $mod N^{2} e_{2} \mod N^{2}$ $e_{2} e_{1} \cdot e_{2} \mod N^{2}$	$Z_{N}^{*} = \{ Z \mid gcd(Z, N) = 1 \}$ $Z < N-1$ $> w2=256$ $v2 = 256$ $> r2=randi(N-1)$ $r2 = 12539$ $> gcd(r2,N)$ $ans = 1$ $> e21=mod_exp((1+N),v2,N_2)$
<pre>> vw=1 w = 16 > rw=ra v = 502 > gcd(r ns = 1 > ew1= w1 = 22</pre>	om <i>r</i> ← 2 6 andi(N-1) 29 w,N) mod_exp 21489	\mathbb{Z}_N^* and or c := $\mathcal{C}_1 = \mathcal{C}_1$ $\mathcal{C}_2 = \mathcal{C}_2$ $\mathcal{O}((1+N), vw)$	utput the ciphertext $[(1+N)^{m} \cdot r^{N} \mod N^{2}].$ $mod N^{2} e_{2} \mod N^{2}$ $e_{2} = e_{1} \cdot e_{2} \mod N^{2}$ $v,N_{2})$	$Z_{N}^{*} = \{ Z \mid gcd(Z, N) = 1 \}$ $Z < N-1$ $> w2=256$ $v2 = 256$ $> r2=randi(N-1)$ $r2 = 12539$ $> gcd(r2,N)$ $ans = 1$ $> e21=mod_exp((1+N),v2,N_2)$ $e21 = 3543809$
Enc: rando v = 16 v = 502 gcd(r ns = 1 > ew1= w1 = 22 > ew2=	6 andi(N-1) 29 w,N) ≅mod_exp 21489 ≅mod_exp	\mathbb{Z}_{N}^{*} and or c := \mathcal{C}_{1} $\mathcal{C}_{-} \in \mathbb{R}^{2}$ $\mathcal{O}((1+N), vw)$ $\mathcal{O}(rw, N, N_{-})$	utput the ciphertext $[(1+N)^{m} \cdot r^{N} \mod N^{2}].$ $mod N^{2} e_{2} \mod N^{2}$ $e_{2} = e_{1} \cdot e_{2} \mod N^{2}$ $v,N_{2})$	$Z_{N}^{*} = \{ Z \mid gcd(Z, N) = 1 \}$ $Z < N-1$ $>> w2=256$ $v2 = 256$ $>> r2=randi(N-1)$ $r2 = 12539$ $>> gcd(r2,N)$ $ans = 1$ $>> e21=mod_exp((1+N),v2,N_2)$ $e21 = 3543809$ $>> e22=mod_exp(r2,N,N_2)$
<pre>> vw=1 w = 16 > rw=ra v = 502 > gcd(r ns = 1 > ew1= w1 = 22 > ew2= w2 = 1</pre>	om $r \leftarrow 2$ 6 andi(N-1) 29 w,N) mod_exp 21489 mod_exp 15257872	\mathbb{Z}_{N}^{*} and or $c := \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	utput the ciphertext $[(1 + N)^{m} \cdot r^{N} \mod N^{2}].$ $mod N^{2} e_{2} \mod N^{2}$ $e_{2} = e_{1} \cdot e_{2} \mod N^{2}$ (N_{2}) (N_{2})	$Z_{N}^{*} = \{ Z \mid gcd(Z, N) = 1 \}$ $Z < N-1$ $> w2=256$ $v2 = 256$ $> r2=randi(N-1)$ $r2 = 12539$ $> gcd(r2,N)$ $ans = 1$ $> e21=mod_exp((1+N),v2,N_2)$ $e21 = 3543809$ $> e22=mod_exp(r2,N,N_2)$ $e22 = 57431777$
<pre>> Enc: rando > rw=1 > rw=16 > rw=ra > gcd(r > s = 1 > ew1= > ew1= 2 > ew2= w2 = 1 > ew=n</pre>	om $r \leftarrow 2$ 6 andi(N-1) 29 w,N) mod_exp 21489 mod_exp 15257872	\mathbb{Z}_{N}^{*} and or c := \mathcal{C}_{1} $\mathcal{C}_{-} \in \mathbb{R}^{2}$ $\mathcal{O}((1+N), vw)$ $\mathcal{O}(rw, N, N_{-})$	utput the ciphertext $[(1+N)^{m} \cdot r^{N} \mod N^{2}].$ $mod N^{2} e_{2} \mod N^{2}$ $P_{2} = e_{1} \cdot e_{2} \mod N^{2}$ (N_{2}) (N_{2})	$Z_{N}^{*} = \{ Z \mid gcd(Z, N) = 1 \}$ $Z < N-1$ $>> w2=256$ $v2 = 256$ $>> r2=randi(N-1)$ $r2 = 12539$ $>> gcd(r2,N)$ $ans = 1$ $>> e21=mod_exp((1+N),v2,N_2)$ $e21 = 3543809$ $>> e22=mod_exp(r2,N,N_2)$

1.7.

Å

 $m := \begin{bmatrix} \frac{c^{\phi} \mod N^2}{2} d_1 & \phi^{-1} \mod N = d_3 \\ \frac{\phi(N)^{-1} \mod N}{2} & \frac{\phi(N)^{-1} \mod N}{2} \end{bmatrix} \cdot m = d_2 \cdot d_3 \mod N$ $\frac{d_1-1}{N} \mod N = d_2$

Gan1 := 256 Can2 := 16 >> d1=mod_exp(E,fy,N_2) (an3:=1 d1 = 73298686 >> d2-mod((d1-1)/N,N) >> NVCan1=floor(272/256) >> vv=V-1*256 ans = 8462 NVCan1 = 1vv = 16 >> d2=mod((d1-1)/N,N)>> 272/256 d2 = 5295 ans = 1.0625 >> fy_m1=mulinv(fy,N) fy_m1 = 1885 >> d3=fy_m1 d3 = 1885 >> m=mod(d2*d3,N) m = 272 >> V=m V = 272

P.Vardas	No	ri	ci	С	V_by_M: cMi	c*cMi	Dec(c*cMi)	Tot_S_of_V	
Au. Juozas	1	16339	149318501	216987098	92831661	152067656	896	896	
Be. Antanas	2	8609	32143614	216987098	123083220	203234256	896	896	
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10								
	11								
	12								
	12								
	14								
	15								
		1							
ri		Randor	n number gei	nerated for Pa	aillier encryptio	on			
ci				by Paillier en					
С		The pro	oduct of all er	ncrypted vote	s in your pollin	g station. Pro	ovided by lec	turer	
C		The pro	oduct of all er	icrypted vote	s in your pollin	g station. Pro	ovided by le	SC.	ecturer

V_by_M: cMi	Encrypted Vote received by Mail: cMi. Provided by lecturer	
c*cMi	Multiplied encrypted votes in polling station multiplied by cMi	
Dec(c*cMi)	Decryption all multiplied votes	
Tot_S_of_V	Total sum of votes	

N	0	N_of_V_Can1	N_of_V_Can2	N_of_V_Can3	Tot_N_of_V	Dec(cMi)	Acc/Dec cMi	Can1	Can2	Can3
1		5	8	0	13	512, 2 balsai uz pirma	Dec	3	8	0
2	2	6	8	0	14	256, 256, 256	Dec	3	8	0
З	3									
4	1									
5	5									
6	3									
7	7									
8	3									
9)									
1	0									
1	1									
1	2									
1										
1										
1										

N_of_V_Can1	Number of votes for Can1
N_of_V_Can2	Number of votes for Can2
N_of_V_Can3	Number of votes for Can3
Tot_N_of_V	Total number of votes
Dec(c*Mi)	Decrypted vote cMi received by Mail
Acc/Dec cMi	Accept or Decline vote received by Mail. Input: Acc or Dec
Can1	Number of votes for Can1
Can2	Number of votes for Can2
Can3	Number of votes for Can3

M = 15 Voters: $V = 22.12 = N_2(Can^2) + N_2(Can^2) + N_3(Can^3)$

0 0 0 0 Can1	0 0 0 0 Can2	00001 Can3	For Can3 : 0000 0000 0001 _b =1
 0 0 0 0 Can1	0001 Can2	0 0 0 0 Can3	For Can2 : 0000 0001 0000 _b =2 ⁴ =16
0001 Can1	0 0 0 0 Can2	0 0 0 0 Can3	For Can1 : 0001 0000 0000 _b =2 ⁸ =256

-	Can1	Can2		Can3		
>> dec	c2bin(2212))			>> 2212/256	
	1000101001				ans = 8.6406	
		1010	0100		>> 2212-8*256	
-		10 votes			ans = 164	
	Can1	Can2	Can3		>> 164/16	
					ans = 10.250	
					>> 2212-8*256-10*16	
					ans = 4	
					>> 8*256+10*16+4*1	
					ans = 2212	
				Till this place		